ODTN

- Open and Disaggregated Transport Networks -

Toru Furusawa NTT Communications

Agenda

- Technology Trends of Disaggregated Transport Networks
- Introduction of ODTN Project
 - Project Scope
 - Members & Teams
 - Schedule
 - Software Design
- Current Project Status & Next Steps

Technology Trends of Disaggregated Transport Networks

■ From All-in-One to Disaggregation

- Innovations and upgrades from "per all-in-one nodes" to "per each component"
- Integration from "in hardware" to "in software"
- Active Open communities for disaggregated transport networks
 - Open Line Systems
 - OpenConfig
 - TAPI etc...

Open Line Systems

4

 Traditional optical line systems are integrated systems with a single vendor's transponder, mux/demux, amp, ROADM

Next Step in Disaggregation: Open Line Systems

- Open Line Systems are disaggregated systems composed of multi-vendor transponders
- Possible to use preferred vendor's transponder every time of wavelenth expansion

OpenConfig

Google-Driven community to define vendor neutral data models for device configuration and telemetry

- Covering multiple layers (L1-L3)
- Out of scope: Data Plane interoperability, controller software & southbound protocol

ONF TAPI

Transport API (TAPI)

ONF Driven API used for NBI of Transport Network Controllers

Towards Full Open Architecture with existing activities

Existing communities are focused on each specific target No "Integrated Solution" in open source community -> Build a reference implementation by using those communities outputs

ODTN Project

We have launched "ODTN (Open and Disaggregated Transport Networks)" Project with ONF and other companies to build a open reference implementation with open technologies

Project Members

Project Purpose and Charter

- Bring eco-system together to
 - Build reference implementation using open source and open standards
 - Do lab and field trials
- Consisting of three phases
 - Plan/Retrospective meetings for each phase
- Kick-off with 3 leading service providers, 8 vendors (as of Jan 2018)

Project Scope

(1) NBI Handler

Compile YANG based service model

Provide TAPI based NBI

(2) Service Application

Implement Java code to map TAPI to OpenConfig

(3) SBI Driver

Compile YANG based device model

Configure device with OpenConfig model

(4) Integration & Test

Phase 1: Point-to-Point Open Line System with Open APIs Goal

- Integrate ONOS and OLS devices with a simple P-to-P topology by using open API (TAPI / OpenConfig)
- Build and verify the reference implementation for P-to-P use case
- Identify problems to be solved for the phase 2

Device Components

- Transponder
- OLS: mux/demux, in-line amplifier

Term

- · Jan 2018 Aug 2018 (8 months)
 - Phase 1.0 (transponder only): Jan 2018 April 2018
 - Phase 1.5 (transponder + OLS): May 2018 August 2018

Phase 2: Mesh Metro ROADM with Open APIs

Goal

- Integrate ONOS and ROADM devices with a partial mesh topology by using open APIs
- Build and verify the reference implementation metro ROADM use case
- Identify problems to be solved for the phase 3

Device Components

- Transponder
- ROADM

Term

• Sep 2018 – April 2019

Phase 3: Full Disaggregated ROADM with Open APIs

Goal

- Integrate ONOS and disaggregated optical components by using open APIs
- Verify the reference implementation that works certainly for disaggregated ROADM use case
- Identify problems to be solved toward production

Device Components

Transponder, WSS, AMP, AOS, etc. (details TBD)

Term

• May 2019 - Dec 2019

Project Teams Active Members Team **Project Steering** Comcast, NTT Com (Project Chair), Telefonica, 1 vendor, ONF Use Case Ciena, Comcast, Coriant, NEC, NTT Com(lead), Nokia, Telefonica, TIM etc Software Development CTTC, NEC (lead), Nokia, Oplink, ZTE etc Infrastructure (not formed yet) TBD - formed for each service provider lab Testing (not formed yet) TBD - work closely with SW Development Team

Schedule

High Level Design

Model Discussion slide in Use Case Team

Model Definition work by Use Case Team

(0. Scope Clarification and TAPI Model Selection)

- 1. TAPI NBI Selection
- TAPI Parameter Mapping (ConnectivityService/SEP -> Connection/CEP) com
- 3. TAPI Parameter Selection (Connection/CEP) mapped to SB
- Parameter Mapping from TAPI (Connection/CEP) to OpenConfig (different for each vendor)
- 5. OpenConfig SB Model Selection (different for each vendor)

Model Discussion slide in Use Case Team

e for Phase 1.0

Current Status & Next Steps

- TAPI & OpenConfig model definitions for phase 1.0
- Software development in progress
- 2 vendors' transponders to be tested for the phase 1.0
 - Nokia
 - Infinera
- F-2-F Meeting planned in May
 - Agenda
 - Phase 1.0 summary
 - Phase 1.5 planning
 - Any other discussions (TBD)
 - Location
 - ONF Office in Menlo Park, California
 - To be announced soon...

Visit our Wiki and join us!

https://wiki.onosproject.org/display/ODTN/ODTN