Nuclear reaction study for long-lived fission products in high-level radioactive waste:

Cross section measurements for proton- and deuteron-induced spallation reactions

He Wang

RIKEN Nishina Center

13th International Conference on Nucleus-Nucleus Collisions, Saitama, Japan, December 4-8, 2018
Content

- Motivation
- Experiment details
- Results and discussion on ^{107}Pd, ^{137}Cs (^{136}Xe), ^{90}Sr
- Summary
Motivation

Spent fuel recycling

LLFP MA
Motivation

High-level radioactive waste

- Long-lived fission products e.g. 107Pd, 93Zr, 126Sn, 137Cs...
- Minor Actinide e.g. 241,243Am, 237Np...

![Diagram showing LLFP, MA, and Spent fuel recycling]
Motivation

High-level radioactive waste

- Long-lived fission products e.g. 107Pd, 93Zr, 126Sn, 137Cs...
- Minor Actinide e.g. 241,243Am, 237Np...

In Japan, ~800t U / year (~75% of 50 LWR)

1t MA and 39t LLFP in spent fuel
Partitioning and transmutation

Spent fuel recycling

LLFP → MA

MA (Np, Am) → 1t
Platinum (Pt, Rh, Pd) → 4t
Heat generator (Cs, Sr) → 5t
Other FP → 30t

Ref: Lecture by Dr. Oigawa, CNS summer school, 2015
Partitioning and transmutation

Spent fuel recycling → LLFP → MA

- MA (Np, Am) 1t → ADS, FBR
- Platinum (Pt, Rh, Pd) 4t → re-used, except for 107Pd (6.5x10^6 y)
- Heat generator (Cs, Sr) 5t → Disposal
- Other FP 30t

Ref: Lecture by Dr. Oigawa, CNS summer school, 2015
Accelerator Transmutation System for LLFP

How about accelerator system to reduce radioactivity of LLFP?
(R. Fujita: WeAM2Pl.2@NN2018)

At reactors,
• transmutation reactions are limited to neutron-induced reactions at energy of thermal to MeV
• LLFP is further produced

At accelerator system,
• A variety of reactions can be applied
 e.g. Spallation reaction, fusion, muon capture, \((n,2n)\) ...

Lack of nuclear reaction data for LLFP (so far, \(n\)-capture only)
A challenge at RIKEN

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy [MeV/u]</th>
<th>LLFP</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>190</td>
<td>$^{137}\text{Cs}/^{136}\text{Xe}$, ^{90}Sr</td>
<td>Spallation</td>
</tr>
<tr>
<td>2015</td>
<td>100/200</td>
<td>^{107}Pd, ^{93}Zr, ^{90}Sr, ^{135}Cs, $^{93,94}\text{Zr}$, $^{79,80}\text{Se}$</td>
<td>Spallation/Coulomb breakup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>50</td>
<td>^{107}Pd, ^{93}Zr</td>
<td>Spallation</td>
</tr>
<tr>
<td></td>
<td>100/200</td>
<td>$^{126,127}\text{Sn}$</td>
<td>Spallation/Coulomb breakup</td>
</tr>
<tr>
<td>2017</td>
<td>30</td>
<td>^{107}Pd, ^{93}Zr, ^{79}Se</td>
<td>Fusion-like</td>
</tr>
</tbody>
</table>

- RI Beam Factory provides a unique opportunity to get reaction data.
- Half-life distributions of fragments from production cross section.
Inverse Kinematics Method

- Proton and deuteron target
- Energy dependence
- Direct measurement on product

LLFP beams

Reaction products
- neutron
- gamma

$^2\text{H} (n \text{ and } p)$
$^1\text{H} (p)$
Experimental setup

- FP (107Pd/137Cs/90Sr) beams production
- Identification for products $B\rho$, ΔE, TOF

BigRIPS

- Production target
- Secondary target CD_2, CH_2, C

ZeroDegree spectrometer
Experimental setup

BigRIPS

ZeroDegree spectrometer

Production target

^{238}U

Tagging

Target

Secondary target

CD_2, CH_2, C

- $^{90}\text{Sr}/^{137}\text{Cs}/^{107}\text{Pd}$ beams production
- Identification for products $B\rho$, ΔE, TOF, Total kinetic energy

Diagram:

- Beam Production
- BigRIPS
- Tagging
- Target
- CD_2
- Products PID
- Secondary target CD_2, CH_2, C
PID example: $^{107}\text{Pd}@100\text{MeV/u}$

Projectile PID@BigRIPS

- Atomic number Z
- Mass-to-charge ratio A/Q

Products @ZeroDegree

- Atomic number Z
- Mass-to-charge ratio A/Q

- ^{102}Pd

Beam Production

BigRIPS

Tagging

ZeroDegree spectrometer

Target

CD_2
Cross section for product

\[\sigma = \frac{N_{\text{products}}}{N_{\text{beam}} \times n_{\text{target}}} \]
107Pd results @ 100 MeV/u

- $\sigma_p > \sigma_d$ for $\Delta Z = +1$
- $\sigma_p \sim \sigma_d$ for Pd, Rh
- $\sigma_p < \sigma_d$ for light-mass ions
- Total cross section ~ 1 barn

Cross section: Energy dependence

- **Ru (Z=44)**
- **Tc (Z=43)**
- **Mo (Z=42)**

- **$p@200$ MeV/u**
- **$p@100$ MeV/u**

Cross section: Energy dependence

\[\sigma_d \text{ at } 100 \text{ MeV/u is similar to } \sigma_p \text{ at } 200 \text{ MeV/u} \]

\[\sigma_d \text{ at } 100 \text{ MeV/u is similar to } \sigma_p \text{ at } 200 \text{ MeV/u} \]

\[\sigma_d \text{ at } 50 \text{ MeV/u is similar to } \sigma_p \text{ at } 100 \text{ MeV/u} \]
Intra-nucleon cascade and evaporation by PHITS

• INCL4.6 + GEM

Cross section: LLFP and neighboring stable nucleus

\[137\text{Cs} \]

Figure:

- Panel a): Ba (Z=56)
- Panel b): Cs (Z=55)
- Panel c): Xe (Z=54)
- Panel d): I (Z=53)
- Panel e): Te (Z=52)
- Panel f): Sb (Z=51)

The figure shows the cross section for different elements as a function of neutron number (N) and proton number (Z). The data points are indicated by black circles for protons (p) and red squares for deuterons (d).

Legend:

- Stable
- Short-lived
- Long-lived

References:

Cross section: LLFP and neighboring stable nucleus

- 1_1H (p)
- 2_1H (d)

^{137}Cs

^{136}Xe

Cross section [mb]

Proton number Z

Neutron number N

Stable

Short-lived

Long-lived

[Graph showing cross sections for various elements and isotopes, including Ba (Z=56), Cs (Z=55), Xe (Z=54), I (Z=53), Te (Z=52), and Sb (Z=51), with data points and error bars for different isotopes, such as ^{136}Ba, ^{137}Ba, ^{138}Ba, ^{135}Cs, ^{136}Cs, ^{137}Cs, ^{134}Xe, ^{135}Xe, and ^{136}Xe]
Potential of spallation for LLFP transmutation

- d-induced spallation reaction
- p-induced spallation reaction
- (n_{th}, γ)

Total cross section [mb]

- ^{90}Sr
- ^{137}Cs
Total cross section for ^{107}Pd

<table>
<thead>
<tr>
<th></th>
<th>Cross section [barn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spallation</td>
<td>1</td>
</tr>
<tr>
<td>(n,\gamma)</td>
<td>9.2</td>
</tr>
</tbody>
</table>
Potential of spallation for LLFP transmutation I

Total cross section for 107Pd

<table>
<thead>
<tr>
<th></th>
<th>Cross section [barn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spallation</td>
<td>1</td>
</tr>
<tr>
<td>(n,γ)</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Transmutation rate depends on
Cross section and Flux
Potential of spallation for LLFP transmutation II

Half-life distributions of products

$^{107}\text{Pd} + p$ 200 MeV/u

- Stable: 64.8%
- $>30000\text{y}$: 6.41%
- 1000–30000y: 1.79%
- 30–1000y: 1.03%
- 30y–1y: 7.88%
- <1y: 18.0%
Potential of spallation for LLFP transmutation II

$^{107}\text{Pd} + p$ 100MeV/u

- Stable: 63.2%
- $>30000y$: 2.03%
- 30y~1y: 9.45%
- $<1y$: 25.0%

$^{107}\text{Pd} + p$ 200MeV/u

- Stable: 64.8%
- $>30000y$: 6.41%
- 1000~30000y: 1.79%
- 30~1000y: 1.03%
- 30y~1y: 7.88%
- $<1y$: 18.0%
Potential of spallation for LLFP transmutation II

$^{107}\text{Pd} + p$ 50MeV/u

- Stable: 66.2%
- $<1\text{y}$: 31.1%
- 30y~1y: 2.74%

$^{107}\text{Pd} + p$ 100MeV/u

- Stable: 63.2%
- $<1\text{y}$: 25.0%
- 30y~1y: 9.45%
- $>30000\text{y}$: 2.03%

$^{107}\text{Pd} + p$ 200MeV/u

- Stable: 64.8%
- $<1\text{y}$: 18.0%
- 30y~1y: 7.88%
- 1000~30000y: 1.79%
- 30~1000y: 1.03%
Summary

• Spallation reactions for LLFP nuclei using inverse kinematics at RIBF
 Target dependence
 Energy dependence

• Comparison with spallation models

• Potential for the transmutation on LLFP
 Total reaction cross section
 Production of other radioactive isotopes at different reaction energies

• Collaboration with nuclear engineering
Collaborators

RIKEN Nishina Center

Kyushu University
Y. Watanabe, S. Kawase, K. Nakano, S. Araki, T. Kin

Tokyo Institute of Technology

Miyazaki University
Y. Maeda, S. Kawakami, T. Yamamoto

University of Tokyo

CNS, Univ. of Tokyo
S. Michimasa, M. Matsushita, S. Shimoura

Hokkaido University
A. Makinaga, M. Aikawa
Reduction and Resource Recycling of High-level Radioactive Wastes through Nuclear Transmutation

http://www.jst.go.jp/impact/en/program/08.html

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
Thank you